创建线程的8种方法,90%的人不知道

前言

在Java开发中,线程是并发编程中的核心工具。

无论是为了提高程序运行效率,还是为了处理复杂的并发任务,我们都需要在代码中使用线程。

但如果你只知道 Thread 和 Runnable 两种方式,那可就有点落后了。

其实,Java 提供了多种方式来创建线程,每一种都有其独特的优势和适用场景。

这篇文章将从浅入深,详细剖析 Java 创建线程的8种方法,每种方法都会附带示例代码和场景解析,帮你彻底掌握线程的创建与管理,希望对你会有所帮助。

(我最近开源了一个基于 SpringBoot+Vue+uniapp 的商城项目,欢迎访问和star。)[https://gitee.com/dvsusan/susan_mall]

1. 继承 Thread 类

直接继承 Thread 类,重写 run() 方法,将任务逻辑写在 run() 中。

通过调用 start() 方法启动线程。

示例代码

class MyThread extends Thread {

@Override

public void run() {

System.out.println("线程名称:" + Thread.currentThread().getName() + " 正在执行任务");

}

}

public class ThreadExample {

public static void main(String[] args) {

MyThread thread1 = new MyThread();

MyThread thread2 = new MyThread();

thread1.start(); // 启动线程

thread2.start();

}

}

场景解析

继承 Thread 是最简单的方式,非常适合初学者学习线程的基本原理。但这种方式扩展性差,因为 Java 是单继承语言,继承了 Thread 后就不能再继承其他类。

优缺点

优点: 简单直观,适合小型任务。

缺点: 限制了类的继承,无法复用已有的逻辑。

2. 实现 Runnable 接口

实现 Runnable 接口,将任务逻辑写在 run() 方法中。

通过 Thread 构造方法将 Runnable 对象传入,启动线程。

示例代码

class MyRunnable implements Runnable {

@Override

public void run() {

System.out.println("线程名称:" + Thread.currentThread().getName() + " 正在执行任务");

}

}

public class RunnableExample {

public static void main(String[] args) {

Thread thread1 = new Thread(new MyRunnable());

Thread thread2 = new Thread(new MyRunnable());

thread1.start();

thread2.start();

}

}

场景解析

相比继承 Thread,实现 Runnable 接口更灵活,避免了单继承的限制。大多数开发场景中,更推荐使用这种方式。

优缺点

优点: 解耦任务逻辑和线程对象,灵活性更高。

缺点: 需要额外创建 Thread 对象。

3. 实现 Callable 接口

Callable 接口是 Java 5 引入的,类似于 Runnable,但它支持返回值,并可以抛出异常。

示例代码

import java.util.concurrent.Callable;

import java.util.concurrent.ExecutionException;

import java.util.concurrent.FutureTask;

class MyCallable implements Callable {

@Override

public String call() throws Exception {

return "线程名称:" + Thread.currentThread().getName() + ",任务执行完成";

}

}

public class CallableExample {

public static void main(String[] args) throws ExecutionException, InterruptedException {

FutureTask futureTask = new FutureTask<>(new MyCallable());

Thread thread = new Thread(futureTask);

thread.start();

// 获取线程返回结果

System.out.println("线程返回结果:" + futureTask.get());

}

}

场景解析

如果你的线程需要返回结果,Callable 是更好的选择,比如数据查询、复杂计算等场景。

优缺点

优点: 支持返回值和异常处理,功能更强大。

缺点: 代码复杂度比 Runnable 略高。

4. 使用线程池

线程池是一种高效的线程管理机制,可以复用线程,减少创建和销毁线程的开销。

示例代码

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

public class ThreadPoolExample {

public static void main(String[] args) {

ExecutorService executorService = Executors.newFixedThreadPool(3);

Runnable task = () -> System.out.println("线程名称:" + Thread.currentThread().getName() + " 正在执行任务");

for (int i = 0; i < 5; i++) {

executorService.execute(task);

}

executorService.shutdown();

}

}

场景解析

适用于需要高并发处理任务的场景,比如 Web 服务的请求处理。

优缺点

优点: 高效管理线程生命周期,避免频繁创建和销毁线程。

缺点: 需要合理配置线程池参数,否则可能导致资源浪费。

5. 使用 ScheduledExecutorService

ScheduledExecutorService 是 Java 提供的一种定时任务调度机制,可以在指定时间点或周期性地执行任务。

示例代码

import java.util.concurrent.Executors;

import java.util.concurrent.ScheduledExecutorService;

import java.util.concurrent.TimeUnit;

public class ScheduledExample {

public static void main(String[] args) {

ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);

Runnable task = () -> System.out.println("当前时间:" + System.currentTimeMillis());

// 延迟1秒后,每2秒执行一次

scheduler.scheduleAtFixedRate(task, 1, 2, TimeUnit.SECONDS);

// 程序运行一段时间后需要手动关闭线程池

// scheduler.shutdown();

}

}

场景解析

适用于周期性任务,比如定时备份、定时清理缓存等。

优缺点

优点: 易于实现定时和周期性任务。

缺点: 不适合复杂调度场景。

6. 使用 Fork/Join 框架

Fork/Join 是 Java 7 引入的一种并行计算框架,适合将大任务分解成多个子任务并行处理。

示例代码

import java.util.concurrent.RecursiveTask;

import java.util.concurrent.ForkJoinPool;

class SumTask extends RecursiveTask {

private final int start, end;

public SumTask(int start, int end) {

this.start = start;

this.end = end;

}

@Override

protected Integer compute() {

if (end - start <= 10) {

int sum = 0;

for (int i = start; i <= end; i++) {

sum += i;

}

return sum;

} else {

int mid = (start + end) / 2;

SumTask leftTask = new SumTask(start, mid);

SumTask rightTask = new SumTask(mid + 1, end);

invokeAll(leftTask, rightTask);

return leftTask.join() + rightTask.join();

}

}

}

public class ForkJoinExample {

public static void main(String[] args) {

ForkJoinPool pool = new ForkJoinPool();

SumTask task = new SumTask(1, 100);

System.out.println("总和:" + pool.invoke(task));

}

}

场景解析

适合大量数据的并行处理,比如递归计算。

优缺点

优点: 提高多核 CPU 的利用率。

缺点: 不适合 I/O 密集型任务。

7. 使用 CompletableFuture

CompletableFuture 是 Java 8 提供的一种异步编程工具,支持链式调用,非常适合复杂任务的分解与组合。

示例代码

import java.util.concurrent.CompletableFuture;

public class CompletableFutureExample {

public static void main(String[] args) {

CompletableFuture.supplyAsync(() -> {

System.out.println("任务执行:" + Thread.currentThread().getName());

return "任务结果";

}).thenApply(result -> {

System.out.println("处理结果:" + result);

return "最终结果";

}).thenAccept(System.out::println);

}

}

场景解析

适用于异步任务链式调用,比如远程服务调用。

优缺点

优点: 功能强大,代码简洁。

缺点: 学习成本较高。

8. 使用 Guava 的 ListenableFuture

Guava 提供了 ListenableFuture,对 Future 进行了增强,支持任务完成后的回调处理。

import com.google.common.util.concurrent.*;

import java.util.concurrent.Executors;

public class ListenableFutureExample {

public static void main(String[] args) {

ListeningExecutorService service = MoreExecutors.listeningDecorator(Executors.newFixedThreadPool(2));

ListenableFuture future = service.submit(() -> {

Thread.sleep(1000);

return "任务完成";

});

Futures.addCallback(future, new FutureCallback() {

@Override

public void onSuccess(String result) {

System.out.println("任务成功,结果:" + result);

}

@Override

public void onFailure(Throwable t) {

System.out.println("任务失败:" + t.getMessage());

}

}, service);

service.shutdown();

}

}

总结

以上就是 Java 中创建线程的 8 种方法,每一种方法都有其适用场景和优缺点。

下面给大家总结一下各自的优缺点:

方法

适用场景

优点

缺点

继承Thread类

简单任务

直观易懂

限制了类的继承

实现Runnable接口

大多数场景

灵活,不影响继承关系

无返回值

实现Callable接口

返回结果或抛异常的任务

支持返回值

需要配合 FutureTask 使用

线程池(ExecutorService)

高并发任务

高效管理线程

配置复杂

ScheduledExecutorService

周期性任务

易于实现定时调度

不适合复杂调度

Fork/Join框架

数据并行计算

提高多核利用率

不适合 I/O 密集型任务

CompletableFuture

异步任务链式调用

功能强大

学习曲线高

Guava的ListenableFuture

异步任务并带回调

回调机制强大,扩展性好

引入了第三方依赖

希望大家在实际开发中,能根据场景选择合适的方式。

比如:小任务用 Runnable,复杂计算用 Callable,高并发场景用线程池,而异步任务可以用 CompletableFuture 或 ListenableFuture等等。

通过这些方法的组合,可以让你的代码更加高效、优雅!

最后说一句(求关注,别白嫖我)

如果这篇文章对您有所帮助,或者有所启发的话,帮忙关注一下我的同名公众号:苏三说技术,您的支持是我坚持写作最大的动力。

求一键三连:点赞、转发、在看。

关注公众号:【苏三说技术】,在公众号中回复:进大厂,可以免费获取我最近整理的10万字的面试宝典,好多小伙伴靠这个宝典拿到了多家大厂的offer。

本文收录于我的技术网站:http://www.susan.net.cn

勇者大作战弓手有哪些 65厘米等于多少米
top